Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Immunother Cancer ; 12(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38642938

RESUMO

BACKGROUND: Colitis caused by checkpoint inhibitors (CPI) is frequent and is treated with empiric steroids, but CPI colitis mechanisms in steroid-experienced or refractory disease are unclear. METHODS: Using colon biopsies and blood from predominantly steroid-experienced CPI colitis patients, we performed multiplexed single-cell transcriptomics and proteomics to nominate contributing populations. RESULTS: CPI colitis biopsies showed enrichment of CD4+resident memory (RM) T cells in addition to CD8+ RM and cytotoxic CD8+ T cells. Matching T cell receptor (TCR) clonotypes suggested that both RMs are progenitors that yield cytotoxic effectors. Activated, CD38+ HLA-DR+ CD4+ RM and cytotoxic CD8+ T cells were enriched in steroid-experienced and a validation data set of steroid-naïve CPI colitis, underscoring their pathogenic potential across steroid exposure. Distinct from ulcerative colitis, CPI colitis exhibited perturbed stromal metabolism (NAD+, tryptophan) impacting epithelial survival and inflammation. Endothelial cells in CPI colitis after anti-TNF and anti-cytotoxic T-lymphocyte-associated antigen 4 (anti-CTLA-4) upregulated the integrin α4ß7 ligand molecular vascular addressin cell adhesion molecule 1 (MAdCAM-1), which may preferentially respond to vedolizumab (anti-α4ß7). CONCLUSIONS: These findings nominate CD4+ RM and MAdCAM-1+ endothelial cells for targeting in specific subsets of CPI colitis patients.


Assuntos
Linfócitos T CD8-Positivos , Colite , Humanos , Células Endoteliais , Inibidores do Fator de Necrose Tumoral , Colite/induzido quimicamente , Colite/tratamento farmacológico , Linfócitos T CD4-Positivos , Esteroides/farmacologia , Esteroides/uso terapêutico , Células Estromais
2.
Nat Commun ; 15(1): 1493, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374043

RESUMO

Ulcerative colitis (UC) is driven by immune and stromal subsets, culminating in epithelial injury. Vedolizumab (VDZ) is an anti-integrin antibody that is effective for treating UC. VDZ is known to inhibit lymphocyte trafficking to the intestine, but its broader effects on other cell subsets are less defined. To identify the inflammatory cells that contribute to colitis and are affected by VDZ, we perform single-cell transcriptomic and proteomic analyses of peripheral blood and colonic biopsies in healthy controls and patients with UC on VDZ or other therapies. Here we show that VDZ treatment is associated with alterations in circulating and tissue mononuclear phagocyte (MNP) subsets, along with modest shifts in lymphocytes. Spatial multi-omics of formalin-fixed biopsies demonstrates trends towards increased abundance and proximity of MNP and fibroblast subsets in active colitis. Spatial transcriptomics of archived specimens pre-treatment identifies epithelial-, MNP-, and fibroblast-enriched genes related to VDZ responsiveness, highlighting important roles for these subsets in UC.


Assuntos
Colite Ulcerativa , Humanos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Integrinas/genética , Multiômica , Proteômica , Fármacos Gastrointestinais/uso terapêutico , Resultado do Tratamento , Estudos Retrospectivos
3.
bioRxiv ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36711576

RESUMO

Ulcerative colitis (UC) is driven by immune and stromal subsets, culminating in epithelial injury. Vedolizumab (VDZ) is an anti-integrin antibody that is effective for treating UC. VDZ is known to inhibit lymphocyte trafficking to the intestine, but its broader effects on other cell subsets are less defined. To identify the inflammatory cells that contribute to colitis and are affected by VDZ, we performed single-cell transcriptomic and proteomic analyses of peripheral blood and colonic biopsies in healthy controls and patients with UC on VDZ or other therapies. Here we show that VDZ treatment is associated with alterations in circulating and tissue mononuclear phagocyte (MNP) subsets, along with modest shifts in lymphocytes. Spatial multi-omics of formalin-fixed biopsies demonstrates trends towards increased abundance and proximity of MNP and fibroblast subsets in active colitis. Spatial transcriptomics of archived specimens pre-treatment identifies epithelial-, MNP-, and fibroblast-enriched genes related to VDZ responsiveness, highlighting important roles for these subsets in UC.

4.
Gastro Hep Adv ; 2(1): 96-107, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36636264

RESUMO

BACKGROUND AND AIMS: Colon cancer can occur sporadically or in the setting of chronic inflammation, such as in patients with inflammatory bowel disease. We previously showed that A20, a critical negative regulator of tumor necrosis factor signal transduction, could regulate sporadic colon cancer development. In this report, we investigate whether A20 also acts as a tumor suppressor in a model of colitis-associated cancer. METHODS: Colitis and colitis-associated tumors were induced in wild-type and A20 intestinal epithelial cell-specific knockout (A20dIEC) mice using dextran sodium sulfate and azoxymethane. Clinicopathologic markers of inflammation were assessed in conjunction with colonic tumor burden. Gene expression analyses and immunohistochemistry were performed on colonic tissue and intestinal enteroids. Nitric oxide (NO) production and activity were assessed in whole colonic lysates and mouse embryonic fibroblasts. RESULTS: A20dIEC mice develop larger tumors after treatment with dextran sodium sulfate and azoxymethane than wild-type mice. In addition to elevated markers of inflammation, A20dIEC mice have significantly enhanced expression of inducible nitric oxide synthase (iNOS), a well-known driver of neoplasia. Enhanced iNOS expression is associated with the formation of reactive nitrogen species and DNA damage. Loss of A20 also enhances NO-dependent cell death directly. CONCLUSION: Mechanistically, we propose that A20 normally restricts tumor necrosis factor-induced nuclear factor kappa B-dependent production of iNOS in intestinal epithelial cells, thereby protecting against colitis-associated tumorigenesis. We also propose that A20 plays a direct role in regulating NO-dependent cell death.

5.
Cell Rep ; 39(9): 110891, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35649365

RESUMO

Resident microbes in skin and gut predominantly impact local immune cell function during homeostasis. However, colitis-associated neutrophilic skin disorders suggest possible breakdown of this compartmentalization with disease. Using a model wherein neonatal skin colonization by Staphylococcus epidermidis facilitates generation of commensal-specific tolerance and CD4+ regulatory T cells (Tregs), we ask whether this response is perturbed by gut inflammation. Chemically induced colitis is accompanied by intestinal expansion of S. epidermidis and reduces gut-draining lymph node (dLN) commensal-specific Tregs. It also results in reduced commensal-specific Tregs in skin and skin-dLNs and increased skin neutrophils. Increased CD4+ circulation between gut and skin dLN suggests that the altered cutaneous response is initiated in the colon, and resistance to colitis-induced effects in Cd4creIl1r1fl/fl mice implicate interleukin (IL)-1 in mediating the altered commensal-specific response. These findings provide mechanistic insight into observed connections between inflammatory skin and intestinal diseases.


Assuntos
Colite , Imunidade , Animais , Colite/induzido quimicamente , Inflamação , Camundongos , Pele , Staphylococcus epidermidis , Linfócitos T Reguladores
6.
Inflamm Bowel Dis ; 28(8): 1219-1228, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35349682

RESUMO

BACKGROUND: Anti-α4ß7 (Vedolizumab) treats inflammatory bowel disease (IBD) by blocking the interaction between integrin α4ß7 on leukocytes and mucosal addressin cell-adhesion molecule-1 (MAdCAM-1) on the gut endothelium. Women with IBD often require continuing biologic therapy during pregnancy to avoid disease flare. To date, there have been no reports of an increase in adverse events with Vedolizumab use during pregnancy. Notably, integrins play a major role in human placental development during pregnancy. It is unknown whether Vedolizumab disrupts placental cell (cytotrophoblast) invasion and/or adhesion by blocking interactions with MAdCAM-1. We therefore investigated human placental expression of MAdCAM-1, the role of MAdCAM-1/α4ß7 interactions in cytotrophoblast invasion/adhesion in vitro, and whether Vedolizumab administration in vivo alters the placental structure. METHODS: Histological sections of placentas from normal pregnancies were evaluated for MAdCAM-1 expression by immunofluorescence. The impacts of Vedolizumab or anti-integrin ß7 on human cytotrophoblast invasion and adhesion were assessed. Histology results from term placentas of 2 patients with IBD receiving Vedolizumab were compared to those of untreated healthy controls. RESULTS: Placental MAdCAM-1 expression was predominantly associated with invading extravillous cytotrophoblasts at the maternal-fetal interface. Treatment of isolated primary cytotrophoblasts with Vedolizumab or anti-integrin ß7 significantly reduced Matrigel invasion, adherence to a MAdCAM-1-coated substrate, and interactions with HuT-78 cells. Placentas from 2 Vedolizumab-treated patients with IBD exhibited pronounced pathologic features as compared to healthy control specimens. CONCLUSIONS: This study revealed a previously unrecognized role for α4ß7 and MAdCAM-1 in human placentation. More clinical and histological data from Vedolizumab-treated pregnant patients will be necessary to determine whether this medication poses any risk to the mother and fetus.


Assuntos
Doenças Inflamatórias Intestinais , Trofoblastos , Anticorpos Monoclonais Humanizados , Adesão Celular , Feminino , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Integrinas/metabolismo , Leucócitos/metabolismo , Mucoproteínas/metabolismo , Placenta/metabolismo , Placenta/patologia , Gravidez , Trofoblastos/metabolismo , Trofoblastos/patologia
7.
J Clin Invest ; 132(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35077396

RESUMO

Anti-TNF antibodies are effective for treating patients with inflammatory bowel disease (IBD), but many patients fail to respond to anti-TNF therapy, highlighting the importance of TNF-independent disease. We previously demonstrated that acute deletion of 2 IBD susceptibility genes, A20 (Tnfaip3) and Abin-1 (Tnip1), in intestinal epithelial cells (IECs) sensitized mice to both TNF-dependent and TNF-independent death. Here we show that TNF-independent IEC death after A20 and Abin-1 deletion was rescued by germ-free derivation or deletion of MyD88, while deletion of Trif provided only partial protection. Combined deletion of Ripk3 and Casp8, which inhibits both apoptotic and necroptotic death, completely protected against death after acute deletion of A20 and Abin-1 in IECs. A20- and Abin-1-deficient IECs were sensitized to TNF-independent, TNFR1-mediated death in response to lymphotoxin α (LTα) homotrimers. Blockade of LTα in vivo reduced weight loss and improved survival when combined with partial deletion of MyD88. Biopsies of inflamed colon mucosa from patients with IBD exhibited increased LTA and IL1B expression, including a subset of patients with active colitis on anti-TNF therapy. These data show that microbial signals, MyD88, and LTα all contribute to TNF-independent intestinal injury.


Assuntos
Doenças Inflamatórias Intestinais , Linfotoxina-alfa , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose , Células Epiteliais/metabolismo , Epitélio/metabolismo , Humanos , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Linfotoxina-alfa/genética , Linfotoxina-alfa/metabolismo , Linfotoxina-alfa/farmacologia , Camundongos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Inibidores do Fator de Necrose Tumoral
9.
PLoS One ; 14(7): e0218999, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31295268

RESUMO

Microbial dysbiosis commonly occurs in patients with inflammatory bowel diseases (IBD). Exogenous causes of dysbiosis such as antibiotics and diet are well described, but host derived causes are understudied. A20 is a potent regulator of signals triggered by microbial pattern molecules, and A20 regulates susceptibility to intestinal inflammation in mice and in humans. We now report that mice lacking A20 expression in dendritic cells, A20FL/FL CD11c-Cre mice (or A20dDC mice), spontaneously develop colitogenic intestinal dysbiosis that is evident upon weaning and precedes the onset of colitis. Intestines from A20dDC mice express increased amounts of Reg3ß and Reg3γ, but not Ang4. A20 deficient DCs promote gut microbiota perturbation in the absence of adaptive lymphocytes. Moreover, A20 deficient DCs directly induce expression of Reg3ß and Reg3γ but not Ang 4 in normal intestinal epithelial cell enteroid cultures in the absence of other cell types. These findings reveal a pathophysiological pathway in which defective expression of an IBD susceptibility gene in DCs drives aberrant expression of anti-bacterial peptides and luminal dysbiosis that in turn confers host susceptibility to intestinal inflammation.


Assuntos
Disbiose/tratamento farmacológico , Inflamação/tratamento farmacológico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Animais , Antibacterianos/farmacologia , Células Dendríticas/microbiologia , Disbiose/genética , Disbiose/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase , Humanos , Inflamação/genética , Inflamação/microbiologia , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/microbiologia , Intestinos/microbiologia , Camundongos , Camundongos Knockout , Proteínas Associadas a Pancreatite/genética , Peptídeos/farmacologia , Ribonuclease Pancreático/genética , Simbiose/efeitos dos fármacos
11.
Clin Gastroenterol Hepatol ; 17(4): 701-708.e1, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29935326

RESUMO

BACKGROUND & AIMS: I-scan is an electronic chromoendoscopy technology that improves resolution of epithelial and mucosal surfaces and vessels. We performed a randomized controlled trial to compare detection of adenomas by i-scan vs standard high-definition white-light (HDWL) colonoscopy. METHODS: From February 1 through December 31, 2017, 740 outpatients (50-75 years old) undergoing screening and surveillance for colorectal neoplasia were randomly assigned to groups that received colonoscopies with i-scan 1 (surface and contrast enhancement) or HDWL. When lesions and polyps were detected, endoscopists could switch between i-scan 1 and HDWL imaging to confirm their finding; polyps were collected and analyzed by histology. The primary outcome was adenoma detection rate (ADR, proportion of subjects with at least 1 adenoma of any size); secondary outcomes included detection of sessile serrated polyps and neoplasias, along with location, size, and morphology of polyps. We performed intent to treat and per-protocol analyses (on 357 patients evaluated by i-scan and 358 evaluated by HDWL colonoscopy) to assess the primary and secondary outcomes. RESULTS: There were no differences in baseline characteristics between the groups. In the intent to treat analysis, the ADR was significantly higher in the i-scan 1 group (47.2%) than in the HDWL colonoscopy group (37.7%) (P = .01). In the per-protocol analysis, the ADR in the i-scan 1 group (47.6%) was also significantly higher than in the HDWL group (37.2%) (P = .005), but this effect was not consistent among all endoscopists. There was no difference between groups in detection of sessile serrated polyps. However, the rate of neoplasia detection was significantly higher in the i-scan 1 group (56.4%) than in the than the HDWL group (46.1%) (P = .005). In secondary analyses, the increase in ADR was associated with improved detection of diminutive flat adenomas in the right colon. CONCLUSION: In a prospective randomized trial, higher proportions of patients with adenomas were identified in a group that underwent colonoscopy with i-scan 1 than in a group evaluated by HDWL colonoscopy. This effect was mainly due to improved detection of diminutive, flat right sided adenomas. I-scan 1 technology may benefit some endoscopists. ClinicalTrials.gov no: NCT02811419.


Assuntos
Adenoma/diagnóstico , Colonoscopia/métodos , Neoplasias Colorretais/diagnóstico , Imagem Óptica/métodos , Coloração e Rotulagem/métodos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pólipos/diagnóstico , Estudos Prospectivos , Distribuição Aleatória
12.
Clin Transl Gastroenterol ; 9(7): 172, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30065242

RESUMO

The original version of this article contained an error in Fig. 2, in which part of the text in the legend was omitted. This has now been corrected in the PDF and HTML versions of the paper.Furthermore, the figure legends were missing for the Supplementary figure files. The HTML has now been updated to include a corrected version of the Supplementary Information.

13.
J Exp Med ; 215(7): 1839-1852, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29930103

RESUMO

A20 (TNFAIP3) and ABIN-1 (TNIP1) are candidate susceptibility genes for inflammatory bowel disease and other autoimmune or inflammatory diseases, but it is unclear how these proteins interact in vivo to prevent disease. Here we show that intestinal epithelial cell (IEC)-specific deletion of either A20 or ABIN-1 alone leads to negligible IEC loss, whereas simultaneous deletion of both A20 and ABIN-1 leads to rapid IEC death and mouse lethality. Deletion of both A20 and ABIN-1 from enteroids causes spontaneous cell death in the absence of microbes or hematopoietic cells. Studies with enteroids reveal that A20 and ABIN-1 synergistically restrict death by inhibiting TNF-induced caspase 8 activation and RIPK1 kinase activity. Inhibition of RIPK1 kinase activity alone, or caspase inhibition combined with RIPK3 deletion, abrogates IEC death by blocking both apoptosis and necroptosis in A20 and ABIN-1 double-deficient cells. These data show that the disease susceptibility proteins A20 and ABIN-1 synergistically prevent intestinal inflammation by restricting IEC death and preserving tissue integrity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Intestinos/citologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Animais , Apoptose , Caspases/metabolismo , Sobrevivência Celular , Enterocolite/patologia , Deleção de Genes , Camundongos , Organoides/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
14.
PLoS One ; 13(5): e0195893, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29718933

RESUMO

A20 is a ubiquitin-editing enzyme that is known to regulate inflammatory signaling and cell death. However, A20 mutations are also frequently found in multiple malignancies suggesting a potential role as a tumor suppressor as well. We recently described a novel role for A20 in regulating the wnt-beta-catenin signaling pathway and suppressing colonic tumor development in mice. The underlying mechanisms for this phenomenon are unclear. To study this, we first generated A20 knockout cell lines by genome-editing techniques. Using these cells, we show that loss of A20 causes dysregulation of wnt-dependent gene expression by RNAseq. Mechanistically, A20 interacts with a proximal signaling component of the wnt-signaling pathway, receptor interacting protein kinase 4 (RIPK4), and regulation of wnt-signaling by A20 occurs through RIPK4. Finally, similar to the mechanism by which A20 regulates other members of the receptor interacting protein kinase family, A20 modifies ubiquitin chains on RIPK4 suggesting a possible molecular mechanism for A20's control over the wnt-signaling pathway.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Via de Sinalização Wnt , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Ligação Proteica , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/deficiência , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitinação
15.
Clin Transl Gastroenterol ; 9(4): 143, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29618720

RESUMO

OBJECTIVES: Infants exposed to combination therapy with anti-tumor necrosis factor (anti-TNF) agents and thiopurines may exhibit increased infections at 1 year of age compared to unexposed infants. We hypothesized that this increased risk of infection is due to abnormal development of the newborn immune system. METHODS: We immunophenotyped B-cell and T-cell subsets using multiparameter flow cytometry in 1-year-old infants whose mothers were exposed to therapeutic agents for IBD. We analyzed samples from infants exposed to infliximab (IFX) or adalimumab (ADA) monotherapy (IFX/ADA, n = 11), certolizumab pegol (CZP) monotherapy (CZP, n = 4), IFX or ADA plus thiopurine combination therapy (IFX/ADA + IM, n = 4), and CZP plus thiopurine combination therapy (CZP + IM, n = 2). RESULTS: Percentages of B cells, CD4+ T helper cells, T regulatory cells (Tregs), and CD8+ cytotoxic T cells, were similar among the groups. Infants exposed to combination therapy (IFX/ADA + IM) exhibited trends toward fewer CD27+ B cells, switched memory B cells, plasmablasts, interferon gamma (IFNγ)-producing CD4+ and CD8+ T cells, and CCR5+CD4+ T cells, but these did not reach statistical significance. CONCLUSIONS: Multiparameter immunophenotyping of major B-cell and T-cell subsets suggests that the adaptive newborn immune system develops largely unaltered after exposure to combination therapy as compared to anti-TNF monotherapy.


Assuntos
Anti-Inflamatórios/uso terapêutico , Subpopulações de Linfócitos B/metabolismo , Fatores Imunológicos/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Complicações na Gravidez/tratamento farmacológico , Efeitos Tardios da Exposição Pré-Natal , Subpopulações de Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adalimumab/uso terapêutico , Adulto , Animais , Certolizumab Pegol/uso terapêutico , Quimioterapia Combinada , Feminino , Humanos , Imunofenotipagem , Lactente , Infecções/imunologia , Infliximab/uso terapêutico , Masculino , Mercaptopurina/uso terapêutico , Camundongos Endogâmicos C57BL , Gravidez , Estudos Prospectivos , Fatores de Risco
17.
J Mol Biol ; 429(22): 3471-3485, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29031697

RESUMO

Ubiquitin and ubiquitin-modifying enzymes play critical roles in a wide variety of intracellular signaling pathways. Inflammatory signaling cascades downstream of TNF, TLR agonists, antigen receptor cross-linking, and cytokine receptors, all rely on ubiquitination events to direct subsequent immune responses. In the past several years, inflammasome activation and subsequent signal transduction have emerged as an excellent example of how ubiquitin signals control inflammatory responses. Inflammasomes are multiprotein signaling complexes that ultimately lead to caspase activation and release of the interleukin-1 (IL-1) family members, IL-1ß and IL-18. Inflammasome activation is critical for the host's defense against pathogens, but dysregulation of inflammasomes may contribute to the pathogenesis of multiple diseases. Ultimately, understanding how various ubiquitin interacting proteins control inflammatory signaling cascades could provide new pathways for therapeutic intervention. Here we review specific ubiquitin-modifying enzymes and ubiquitination events that orchestrate inflammatory responses, with an emphasis on the NLRP3 inflammasome.


Assuntos
Enzimas Desubiquitinantes/metabolismo , Inflamassomos/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitina/metabolismo , Animais , Humanos
18.
Immunity ; 46(3): 405-420, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28314591

RESUMO

During immune responses, naive T cells transition from small quiescent cells to rapidly cycling cells. We have found that T cells lacking TAX1BP1 exhibit delays in growth of cell size and cell cycling. TAX1BP1-deficient T cells exited G0 but stalled in S phase, due to both bioenergetic and biosynthetic defects. These defects were due to deficiencies in mTOR complex formation and activation. These mTOR defects in turn resulted from defective autophagy induction. TAX1BP1 binding of LC3 and GABARAP via its LC3-interacting region (LIR), but not its ubiquitin-binding domain, supported T cell proliferation. Supplementation of TAX1BP1-deficient T cells with metabolically active L-cysteine rescued mTOR activation and proliferation but not autophagy. These studies reveal that TAX1BP1 drives a specialized form of autophagy, providing critical amino acids that activate mTOR and enable the metabolic transition of activated T cells.


Assuntos
Autofagossomos/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Ativação Linfocitária/imunologia , Proteínas de Neoplasias/imunologia , Linfócitos T/imunologia , Animais , Autofagossomos/metabolismo , Autofagia/imunologia , Separação Celular , Cromossomos Artificiais Bacterianos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Neoplasias/metabolismo , Linfócitos T/metabolismo , Serina-Treonina Quinases TOR/imunologia , Serina-Treonina Quinases TOR/metabolismo
20.
Proc Natl Acad Sci U S A ; 112(10): 3044-9, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25713364

RESUMO

Antigen-specific CD4(+) T cells are implicated in the autoimmune disease systemic lupus erythematosus (SLE), but little is known about the peptide antigens that they recognize and their precise function in disease. We generated a series of MHC class II tetramers of I-E(k)-containing peptides from the spliceosomal protein U1-70 that specifically stain distinct CD4(+) T-cell populations in MRL/lpr mice. The T-cell populations recognize an epitope differing only by the presence or absence of a single phosphate residue at position serine(140). The frequency of CD4(+) T cells specific for U1-70(131-150):I-E(k) (without phosphorylation) correlates with disease severity and anti-U1-70 autoantibody production. These T cells also express RORγt and produce IL-17A. Furthermore, the U1-70-specific CD4(+) T cells that produce IL-17A are detected in a subset of patients with SLE and are significantly increased in patients with mixed connective tissue disease. These studies provide tools for studying antigen-specific CD4(+) T cells in lupus, and demonstrate an antigen-specific source of IL-17A in autoimmune disease.


Assuntos
Autoanticorpos/biossíntese , Linfócitos T CD4-Positivos/metabolismo , Interleucina-17/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Doença Mista do Tecido Conjuntivo/imunologia , Oligopeptídeos/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Camundongos , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...